New Generation of Anodizing

1.0 Introduction

The practice of anodizing, or controlled oxidation, of aluminum and aluminum alloys is more than seven decades old. The primary intent of anodizing aluminum and aluminum alloy parts is to protect the highly reactive surface against corrosion in aqueous environments, such as humid air and sea water. Because the anodic coating can be produced in a variety of colors, painted anodized parts are used in architectural applications. Furthermore, because the anodization process produces a hard ceramic coating, many times harder than that of the substrate from which it is formed, anodic coatings are also used to protect aluminum parts from abrasion, especially sand abrasion.

2.0 Traditional Anodizing

Traditional anodizing is an electrochemical oxidation process. The part to be anodized is connected to the positive terminal of a Direct Current (DC) power source and a nonreactive metal, such as stainless steel, is connected to the negative terminal. The aluminum part, or the anode, and the stainless steel cathode are immersed in an electrolytic bath and a DC voltage is applied across them. The potential difference is of the order of 20 -100 V and the current densities are 1-10 A/dm2.

The electrolytic baths comprise aqueous solutions of chromic acid, orthophosphoric acid, sulfuric acid, oxalic acid, or combinations thereof. Because the electrolytic baths have appreciable resistivity and because the anodization process itself is exothermic the temperature of the electrolytic bath increases greatly during anodizing.

Since the anodizing process is quite sensitive to temperature, the bath temperature is controlled rather closely by heat exchanger or refrigeration equipment. Today's advanced anodizing technologies include several proprietary hard anodizing processes that employ a wide range of electrolyte compositions, operating conditions and a limited aluminum alloy compositions.

The type and thickness of coating obtained greatly depends on the composition of the electrolytic bath, operating conditions and alloy compositions. The military specification MIL-A-8625F, for example, lists at least six types and two classes of electrolytically formed anodic coatings on aluminum and aluminum alloys for non architectural applications.

Despite the many decades of experience and the expensive equipment employed by the traditional anodizing plants, the acid bath based DC anodizing process has severe limitations.