Artificial Intelligence And Intuition

The intuitive algorithm

Roger Penrose considered it impossible. Thinking could never imitate a computer process. He said as much in his book, The Emperor's New Mind. But, a new book, The Intuitive Algorithm, (IA), suggested that intuition was a pattern recognition process. Intuition propelled information through many neural regions like a lightning streak. Data moved from input to output in a reported 20 milliseconds. The mind saw, recognized, interpreted and acted. In the blink of an eye. Myriad processes converted light, sound, touch and smell instantly into your nerve impulses. A dedicated region recognized those impulses as objects and events. The limbic system, another region, interpreted those events to generate emotions. A fourth region responded to those emotions with actions. The mind perceived, identified, evaluated and acted. Intuition got you off the hot stove in a fraction of a second. And it could be using a simple algorithm.

Is instant holistic evaluation impossible?

The system, with over a hundred billion neurons, processed the information from input to output in just half a second. All your knowledge was evaluated. Walter Freeman, the famous neurobiologist, defined this amazing ability. "The cognitive guys think it's just impossible to keep throwing everything you've got into the computation every time. But, that is exactly what the brain does. Consciousness is about bringing your entire history to bear on your next step, your next breath, your next moment." The mind was holistic. It evaluated all its knowledge for the next activity. How could so much information be processed so quickly? Where could such knowledge be stored?

Exponential growth of the search path

Unfortunately, the recognition of subtle patterns posed formidable problems for computers. The difficulty was an exponential growth of the recognition search path. The problems in the diagnosis of diseases was typical. Normally, many shared symptoms were presented by a multitude of diseases. For example, pain, or fever could be indicated for many diseases. Each symptom pointed to several diseases. The problem was to recognize a single pattern among many overlapping patterns. When searching for the target disease, the first selected ailment with the first presented symptom could lack the second symptom. This meant back and forth searches, which expanded exponentially as the database of diseases increased in size. That made the process absurdly long drawn