Orbital welding

Orbital welding is Automatic Tunguston inert gas welding. It eliminates chances of manual errors in welding. It produces identical welds for hundred of times hence accuracy in welding. Orbital welding was first used in the 1960's when the aerospace industry recognized the need for a superior joining technique for aerospace hydraulic lines. A mechanism was developed in which the arc from a tungsten electrode was rotated around the tubing weld joint. The arc welding current was regulated with a control system thus automating the entire process. The result was a more precision and reliable method than the manual welding method it replaced. Orbital welding became practical for many industries in the early 1980's when combination power supply / control systems were developed that operated from 110 V AC and were physically small enough to be carried from place to place on a construction site for multiple in-place welds. Modern day orbital welding systems offer computer control where welding parameters for a variety of applications can be stored in memory and called up when needed for a specific application. The skills of a certified welder are thus built into the welding system, producing enormous numbers of identical welds and leaving significantly less room for error or defects. Orbital Welding Equipment In the orbital welding process, tubes / pipes are clamped in place and an orbital weld head rotates an electrode and electric arc around the weld joint to make the required weld. An orbital welding system consists of a power supply and an orbital weld head. Power Supply: The power supply / control system supplies and controls the welding parameters according to the specific weld program created or recalled from memory. The power supply provides the control parameters, the arc welding current, the power to drive the motor in the weld head and switches the shield gas (es) on / off as necessary. Weld Head: Orbital weld heads are normally of the enclosed type and provide an inert atmosphere chamber that surrounds the weld joint. Standard enclosed orbital weld heads are practical in welding tube sizes from 1/16 inch (1.6mm) to 6 inches (152mm) with wall thickness' of up to 0.154 inches (3.9mm) Larger diameters and wall thickness' can be accommodated with open style weld heads. The Physics of the GTAW Process The orbital welding process uses the Gas Tungsten Arc Welding process (GTAW) as the source of the electric arc that melts the base material and forms the weld. In the GTAW process (also referred to as the Tungsten Inert Gas process - TIG) an electric arc is established between a Tungsten electrode and the part to be welded. To start the arc, an RF or high voltage signal (usually 3.5 to 7 KV) is used to break down (ionize) the insulating properties of the shield gas and make it electrically conductive in order to pass through a tiny amount of current. A capacitor dumps current into this electrical path, which reduces the arc voltage to a level where the power supply can then supply current for the arc. The power supply responds to the demand and provides weld current to keep the arc established. The metal to be welded is melted by the intense heat of the arc and fuses together. Reasons for Using Orbital Welding Equipment There are many reasons for using orbital welding equipment. The ability to make high quality, consistent welds repeatedly at a speed close to the maximum weld speed offer many benefits to the user: